Get More Information

Please contact Colleen Young at 970-350-9846 with any questions about this report or for public participation opportunities that may affect water quality. To view the report online, visit www.greeleygov.com/ccr. Access information about drinking water in general on the EPA’s drinking water web site at www.epa.gov/safewater.

Additionally, the public is welcome to attend meetings of Greeley’s Water and Sewer Board, which are usually held on the third Wednesday afternoon of every month. For more information on times, dates and locations of the Board meetings, please contact Yvonne Thornberg at 970-350-9818.

Drink Tap Water Instead of Bottled Water

- **Greeley tap water costs** $0.004 per gallon.
- **Bottled water costs** between $0.89 - $8.26 per gallon.

Tap water is delivered to you, 24/7. When possible, Greeley uses gravity to move water. For instance, the 30-mile pipeline from the Bellvue water treatment plant to Greeley is powered by gravity.

Approximately 80% of plastic water bottles are not recycled.

Connect to Your Water

Water & Sewer Department
970-350-9811
water@greeleygov.com
www.greeleygov.com/water

Water Conservation
970-336-4134
conserve@greeleygov.com
www.greeleygov.com/wc
www.facebook.com/greeleywater
www.twitter.com/greeleywater

Water Emergencies
970-350-9811 (daytime)
970-350-9600 (after hours)

Utility Billing
970-350-9720

Get to Know Your Water

Drinking Water Quality Report

Greeley’s Water Sources

Protecting Water Sources

The Colorado Department of Public Health and Environment has provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit wqcdcompliance.com/ccr. The report is located under Source Water Assessment Reports, and then Assessment Report by County. Select WELD County and find 162321; City of Greeley; or by contacting Colleen Young, at 970-350-9846.

The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan.

Drinking Water

Report

Greeley’s

Water

Sources

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.
Greeley Drinking Water Sources & Uses

6 high-mountain reservoirs
- Barnes Meadow
- Comanche
- Hourglass
- Peterson
- Twin Lake
- Milton Seaman

1 tunnel project
- Laramie-Poudre Tunnel
- 17% ownership of project

2 large water projects
- Colorado-Big Thompson (C-BT) Project
 - 7% of C-BT System
- Windy Gap Project
 - 9% of Windy Gap Water

3 irrigation/water companies
- Greeley and Loveland Irrigation Co. (Boyd Lake)
- Loveland and Greeley Reservoir Co. (Lake Loveland)
- Seven Lakes Reservoir Co. (Horseshoe Reservoir)

Water gets treated at 1 of the 2 water treatment plants.
- Bellvue
 - established 1907
 - operates year round
 - 26.6 million gallons per day capacity
- Boyd Lake
 - established 1964
 - operates April - October
 - 38 million gallons per day capacity

- Plus direct flow rights
- 30% indoor
 - 30% of indoor residential use is flushed down the toilet
 - 70% outdoor
 - 70% of outdoor residential use

Indoor water use:
- 44% of indoor residential use
- 55% of outdoor residential use

Average monthly treated water use:
- 27% of indoor residential use
- 73% of outdoor residential use

Miles of pipeline:
- Raw (not treated) Water Lines: 8 Miles
- Transmission Lines: 155.5 Miles (brings treated water to the city)
- Distribution Lines: 461 Miles (brings treated water around the city)

Year round residential use:
- Indoor 45%
- Outdoor 55%

Summer residential use:
- Indoor 30%
- Outdoor 70%

Indoor residential use:
- 27% of indoor residential use
- 26.6 million gallons per day capacity

Outdoor residential use:
- 73% of outdoor residential use
- 38 million gallons per day capacity
2013 Drinking Water Quality Results

In compliance with the Colorado Primary Drinking Water Regulations, the Greeley Water and Sewer Department is pleased to present our annual Drinking Water Quality Report for the calendar year 2013. Our constant goal is to provide you with a safe and dependable supply of drinking water. Greeley routinely monitors for contaminants in your drinking water according to federal and state laws. The following table shows all detections found in the period from January 1 to December 31, 2013, unless otherwise noted. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Only detected contaminants sampled within the last five years appear in this report.

Disinfectants Sampled in the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Monitoring Period</th>
<th>Results</th>
<th>Samples</th>
<th>TT Requirement</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>9/13</td>
<td>Lowest monthly percentage of samples meeting TT requirement: 97.81%</td>
<td>91</td>
<td>For any two consecutive months, at least 95% of samples (per month) must be detectable.</td>
<td>Water additive used to control microbes</td>
<td>No</td>
</tr>
</tbody>
</table>

Lead and Copper Sampled in the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Monitoring Period</th>
<th>90th Percentile</th>
<th>Number of Samples</th>
<th>Action Level</th>
<th>Sample Sites Above Action Level</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>08/03/11</td>
<td>0.4 ppm</td>
<td>30</td>
<td>1.3 ppm</td>
<td>0</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>Lead</td>
<td>08/03/11</td>
<td>3 ppb</td>
<td>30</td>
<td>15 ppb</td>
<td>0</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Disinfection By Products Sampled in the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average of Individual Samples</th>
<th>Range of Individual Samples</th>
<th>Samples</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorite</td>
<td>0.28 ppb</td>
<td>0.24 - 0.32 ppb</td>
<td>9</td>
<td>1 ppb</td>
<td>0.8 ppb</td>
<td>Byproduct of drinking water disinfection</td>
<td>No</td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAAS)</td>
<td>26.88 ppb</td>
<td>16.6 - 44.7 ppb</td>
<td>32</td>
<td>60 ppb</td>
<td>N/A</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>TTHM</td>
<td>45.81 ppb</td>
<td>17 - 84 ppb</td>
<td>32</td>
<td>80 ppb</td>
<td>N/A</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Turbidity Sampled at the Entry Point to the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Level Found</th>
<th>TT Requirement</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>11/13</td>
<td>Highest single measurement: 0.210 NTU</td>
<td>Maximum 1 NTU for any single measurement</td>
<td>Soil runoff</td>
<td>No</td>
</tr>
<tr>
<td>Turbidity</td>
<td>12/13</td>
<td>Lowest monthly percentage of samples meeting TT requirement for our technology: 100%</td>
<td>In any month, at least 95% of samples must be less than 0.3 NTU</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Total Organic Carbon (Disinfection By Products Precursor)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average of Individual Ratio Samples</th>
<th>Range of Individual Ratio Samples</th>
<th>Samples</th>
<th>TT Minimum Ratio</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Carbon</td>
<td>1.24</td>
<td>1 - 1.48</td>
<td>18</td>
<td>1</td>
<td>Naturally present in the environment</td>
<td>No</td>
</tr>
</tbody>
</table>

For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency and the U.S. Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791 or visit http://water.epa.gov/drink/contaminants.
Terms and Abbreviations

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL): The ‘Maximum Allowed’ is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The ‘Goal’ is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Nephelometric Turbidity Unit (NTU): Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Parts per million (ppm): One part per million corresponds to 1 milligram per liter (mg/l), a very dilute concentration of substance.

Parts per billion (ppb): One part per billion corresponds to 1 microgram per liter (µg/l), a very dilute concentration of substance.

Parts per trillion (ppt): One part per billion corresponds to 1 nanogram per liter (µg/l), a very dilute concentration of substance.

Treatment Technique (TT): A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Important Information

Our water system recently violated a drinking water standard. Although this situation does not require that you take immediate action, as our customers, you have a right to know what happened, what you should do, and what we are doing to correct this situation. We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During (compliance period) July 1-31, 2013, we did not complete all monitoring for (contaminant) disinfection by-products group (DBP Group) and therefore cannot be sure of the quality of our drinking water during that time. There is nothing you need to do at this time. The table below lists the contaminant(s) we did not properly test for.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline 1-800-426-4791 or at www.epa.gov/safewater/lead.

Inorganic Contaminants Sampled at the Entry Point to the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average of Individual Samples</th>
<th>Range of Individual Samples</th>
<th>Samples</th>
<th>MCL (ppm)</th>
<th>MCLG (ppm)</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>0.03 ppm</td>
<td>0.02 - 0.05 ppm</td>
<td>2</td>
<td>2 ppm</td>
<td>2 ppm</td>
<td>Discharge of drilling wastes, discharge from metal refineries, erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.74 ppm</td>
<td>0.71 - 0.76 ppm</td>
<td>2</td>
<td>4 ppm</td>
<td>4 ppm</td>
<td>Erosion of natural deposits, and water additive that promotes strong teeth.</td>
<td>No</td>
</tr>
<tr>
<td>Sodium</td>
<td>19.76 ppm</td>
<td>7.82 - 31.70 ppm</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>Is a secondary standard contaminant.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Synthetic Contaminants Sampled at the Entry Point to the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Average of Individual Samples</th>
<th>Range of Individual Samples</th>
<th>Samples</th>
<th>MCL (ppm)</th>
<th>MCLG (ppm)</th>
<th>Typical Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.01 ppm</td>
<td>0 - 0.02 ppm</td>
<td>8</td>
<td>200 ppt</td>
<td>0 ppt</td>
<td>Leaching from linings of water storage tanks and distribution lines</td>
<td>No</td>
</tr>
</tbody>
</table>