TO: Design Criteria and Construction Specifications (Vol. II of III) Holders

RE: ADDENDUM TO STORM DRAINAGE DESIGN CRITERIA AND CONSTRUCTION SPECIFICATIONS

FROM: Steve Bagley, PE FNSPE, City Engineer

DATE: June 2008

Insert the revised or new pages in your manual. New information includes:

- Replace pages vii and viii of the Table of Contents for Volume II, Storm Drainage. The pages with revised text or information are identified with “revised 6 / 2008.

- Replace pages 1,2,3,4,7,8,9, and 10 in Section 6 and Replace Detail 6-6, Standard Storm Water Bedding Detail. These changes allow for a different gradation for bedding of RCP and also ensure that if nothing is specified by the engineer the minimum of a structural concrete collar is placed when connecting to an existing system or different pipe material, etc.

- Replace Detail 7-1; Details 7-3a and 7-3b; and Details 7-4a and 7-4b. These revisions are a result of the changes made to the curb sections in Volume 1 – Streets. (Please note that the street sections were changed as well, and the resultant changes to Drainage are not included here, but will be changed at a later date.)

- Replace page 1 and 2, and pages 15 through 20 in Section 12; and replace page 1 and 2, and pages 5 through 10 in Section 13. These revisions change the City’s “Stormwater Management Plan” to “Erosion Control Plan” so it is not confused with the State’s Stormwater Management Plan.

- Replace Figure 13-1and 13-1(Continued) Map Symbols. This revises the old map symbol for straw bales to the new symbol for wattles.

SERVING OUR COMMUNITY • IT'S A TRADITION
We promise to preserve and improve the quality of life for Greeley through timely, courteous and cost effective service.
FORWARD

The City of Greeley's Design Criteria and Construction Specification document is intended to provide guidance for the design, review, and construction of those public improvements in or under the public right-of-way and public easements.

This document represents an attempt to assist those in the design, review, and construction industry in providing quality and long-lasting public improvements. The document also provides for consistency in the design, review, and construction areas.

The document is not intended to replace or restrict the design function of the engineer nor the innovativeness and expertise of developers and contractors. Users of this document are encouraged to submit their ideas and methods of improving the document.

__
Steven G. Bagley, P.E.
City Engineer
VOLUME II – STORM DRAINAGE
TABLE OF CONTENTS

SECTION 1.0 GENERAL
1.1 PURPOSE ... 2
1.2 PRINCIPLES FOR STORM DRAINAGE PLANNING & DESIGN 2
1.3 COMPREHENSIVE DRAINAGE PLAN ... 6
1.4 IRRIGATION FACILITIES .. 6
1.5 RELATIONSHIP TO OTHER STANDARDS .. 6
1.6 VARIANCES ... 7
1.7 REVIEW & ACCEPTANCE .. 7

SECTION 2.0 SUBMITTAL REQUIREMENTS
2.1 REVIEW PROCESS ... 2
2.2 CONCEPTUAL DRAINAGE REPORT ... 2
 2.2.1 Conceptual Report Contents ... 3
 2.2.2 Conceptual Report: Plan Contents ... 4
2.3 PRELIMINARY DRAINAGE REPORT ... 5
 2.3.1 Preliminary Report Contents .. 5
 2.3.2 Preliminary Drainage Report Checklist ... 9
 2.3.3 Preliminary Submittal: Plan Contents .. 10
2.4 FINAL DRAINAGE REPORT .. 11
 2.4.1 Final Drainage Report Checklist .. 11
2.5 CONTRUCTION PLANS ... 15
 2.5.1 General Details .. 15
 2.5.2 Plan Portion .. 15
 2.5.3 Proposed Facilities ... 15
 2.5.4 Profile Information ... 16
2.6 CONSTRUCTION CERTIFICATION & DRAWINGS OF RECORD 16

SECTION 3.0 RAINFALL
3.1 INTRODUCTION .. 2
3.2 SELECTION OF DESIGN STORM FREQUENCIES .. 2
3.3 COLORADO URBAN HYDROGRAPH PROCEDURE (CUHP) DESIGN 3
3.4 INTENSITY – DURATION – FREQUENCY (IDF) CURVES............................. 3

SECTION 4.0 RUNOFF ANALYSIS
4.1 INTRODUCTION ... 2
4.2 RATIONAL METHOD ... 2
4.3 COLORADO URBAN HYDROGRAPH PROCEDURE (CUHP) 2
4.4 STORM FLOW ANALYSIS .. 2
 4.4.1 On-Site Flow Analysis .. 3
 4.4.2 Off-Site Flow Analysis .. 3
 4.4.3 Tributary Area within a Major Drainage Way Basin 3
 4.4.4 Tributary Area Not within a Major Drainage Way Basin 3
4.5 CHANNEL ROUTING ... 3

SECTION 5.0 OPEN CHANNELS
5.1 INTRODUCTION AND DEFINITIONS ... 2
 5.1.1 Definitions ... 2
5.2 CHANNEL TYPES, MAJOR & SMALL DRAINAGEWAYS 2
 5.2.1 Natural Channels .. 2
 5.2.2 Grass Lined Channels ... 4
8.4.2 Allowable Street Capacity – Major Storms ..5
8.4.3 Rural Streets (Local, Low-Volume Streets without Curb and Gutter)6
8.5 ALLOWABLE STREET CROSS-FLOW CONDITIONS6
 8.5.1 Cross Street Flow at Intersections...6
 8.5.2 Street Overtopping...6
8.6 DESIGN EXAMPLE – Determination of Street Capacity7
8.7 CHECKLIST ..8

SECTION 9.0 CULVERTS
9.1 INTRODUCTION ..2
9.2 CULVERT HYDRAULICS ..2
9.3 CULVERT DESIGN STANDARDS ...2
 9.3.1 Construction Material and Pipe Size ..2
 9.3.2 Inlet & Outlet Configuration..2
 9.3.3 Hydraulic Data ...2
 9.3.4 Velocity Considerations ...3
 9.3.5 Headwater Considerations ..3
 9.3.6 Structural Design ...3
 9.3.7 Trash Racks...3
9.4 CULVERT SIZING CRITERIA...4
9.5 DESIGN EXAMPLE ...5
9.6 CHECKLIST ..6

SECTION 10.0 HYDRAULIC STRUCTURES
10.1 EROSION CONTROL ..2
10.2 ROCK RIPRAP REVETMENT ...2
10.3 ENERGY DISSIPATORS ...2
10.4 CHECK STRUCTURES & DROP STRUCTURES...2
10.5 BRIDGES ...2
10.6 IRRIGATION DITCH CROSSINGS ...2

SECTION 11.0 DETENTION
11.1 INTRODUCTION..2
11.2 WATER QUALITY ENHANCEMENT...2
 11.2.1 Drainage Maintenance ...2
11.3 STORAGE REQUIREMENTS ...2
 11.3.1 Areas without Master Drainage Plans ...2
 11.3.2 Areas with Master Drainage Plans ...2
 11.3.3 Variances...3
11.4 DESIGN CRITERIA ..3
 11.4.1 Volume & Release Rate ...3
 11.4.2 Design Frequency ...4
 11.4.3 Hydraulic Design..4
11.5 DESIGN STANDARDS FOR OPEN SPACE DETENTION5
 11.5.1 State Engineer’s Office ...5
 11.5.2 Grading Requirements ...5
 11.5.3 Freeboard Requirements ..6
 11.5.4 Trickle Flow Channels ...6
 11.5.5 Outlet Configuration ..6
 11.5.6 Embankment Protection ...7
 11.5.7 Vegetation Requirements ...7
 11.5.8 Maintenance Access ..7
11.6 DESIGN STANDARDS FOR PARKING LOT DETENTION7
 11.6.1 Depth Limitation ...7
 11.6.2 Outlet Configuration ...7
LIST OF TABLES AND FIGURES
(Located at the end of each section)

TABLES
Table 2-1 DRAWING SYMBOL CRITERIA AND HYDROLOGY REVIEW TABLE
Table 3-1 STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA
Table 3-2 INTENSITY-DURATION-FREQUENCY TABULATION
Table 3-3 "EXTENDED DURATION-INTENSITY-FREQUENCY TABULATION / Greeley, CO"
Table 4-1 STORM DRAINAGE SYSTEM DESIGN
Table 4-2 TIME OF CONCENTRATION
Table 6-1 STORM PIPE ALIGNMENT AND SIZE CRITERIA
Table 6-2 STORM PIPE ENERGY LOSS COEFFICIENT (EXPANSION/CONTRACTION)
Table 6-3 STORM PIPE ENERGY LOSS COEFFICIENT (BENDS)
Table 6-4 STORM PIPE ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES)
Table 6-5 MANHOLE JUNCTION LOSSES
Table 6-6 DESIGN EXAMPLE FOR STORM DRAINS
Table 8-1 CITY OF GREELEY STANDARD STREET SECTION CAPACITIES
Table 9-1 HYDRAULIC DATA FOR CULVERTS
Table 9-2 CULVERT RATING
Table 9-3 EXAMPLE OF STANDARD FORM 400-SF4
Table 11-1 WEIR FLOW COEFFICIENTS
Table 11-2 RATIONAL FORMULA METHOD FOR DETENTION POND SIZING

FIGURES
Figure 3-1 "INTENSITY-DURATION-FREQUENCY CURVES / GREELEY, CO"
Figure 5-1 ROUGHNESS COEFFICIENT FOR GRASS CHANNELS
Figure 5-2 TYPICAL GRASS LINED CHANNEL SECTION
Figure 5-3 TYPICAL GRASS LINED CHANNEL SECTION
Figure 5-4 TYPICAL GRASS LINED CHANNEL SECTION FOR SANDY SOILS
Figure 5-5 TRICKLE CHANNEL DETAILS
Figure 5-6 STORM DRAINAGE CRITERIA ROADSIDE DITCH SECTIONS
Figure 5-7 CHANNEL RUNDOWN
Figure 6-1 HYDRAULIC PROPERTIES CIRCULAR PIPE
Figure 6-2 HYDRAULIC PROPERTIES HORIZONTAL ELLIPTICAL PIPE
Figure 6-3 HYDRAULIC PROPERTIES ARCH PIPE
Figure 6-4 DESIGN EXAMPLE FOR STORM DRAINS - PLAN
Figure 6-5 DESIGN EXAMPLE FOR STORM DRAINS - PROFILE
Figure 7-5 ALLOWABLE INLET CAPACITY TYPE 3 COMBINATION ON A CONTINUOUS GRADE
Figure 7-6 ALLOWABLE INLET CAPACITY TYPE R CURB OPENING ON A CONTINUOUS GRADE
Figure 7-7 ALLOWABLE INLET CAPACITY TYPE 13 GRATED INLET ON A CONTINUOUS GRADE
Figure 7-8 ALLOWABLE INLET CAPACITY SUMP CONDITIONS - ALL INLETS
Figure 7-9 INLET DESIGN EXAMPLES - INITIAL STORM
Figure 8-1 NOMOGRAPH FOR FLOW IN TRIANGULAR GUTTERS
Figure 8-2 GUTTER CAPACITY REDUCTION CURVES
Figure 8-3 ALLOWABLE GUTTER CAPACITY - INITIAL STORM
Figure 8-4 ALLOWABLE GUTTER CAPACITY - MAJOR STORM
Figure 8-5 STANDARD ROADWAY SECTION
Figure 8-6 STANDARD ROADWAY SECTION
Figure 8-7 STANDARD ROADWAY SECTION
Figure 8-8 STANDARD ROADWAY SECTION
Figure 8-9 STANDARD ROADWAY SECTION
Figure 8-10 STANDARD ROADWAY SECTION
FIGURES (continued)

Figure 8-11 STANDARD ROADWAY SECTION
Figure 8-12 STANDARD ROADWAY SECTION
Figure 8-13 ADJUSTMENT FOR GUTTER CAPACITY WITH NON-SYMMETRICAL STREET
 SECTION MAJOR STORM
Figure 11-1 OUTFLOW ADJUSTMENT FACTOR VERSUS OUTFLOW RATE/INFLOW PEAK RATIO
Figure 11-2 WEIR DESIGN EXAMPLE
Figure 11-4 DETENTION POND DETAILS
Figure 11-5 UNDERGROUND DETENTION
Figure 11-6 OUTLET DESIGN EXAMPLE
Figure 13-1 MAP SYMBOLS

LIST OF DETAILS

(Location at the end of Volume II - Storm Drainage)

Detail 1-1 STORMWATER GENERAL NOTES
Detail 6-6 STANDARD STORMWATER BEDDING DETAIL
Detail 6-7 STANDARD STORMWATER BEDDING DETAIL
Detail 6-8 STANDARD STORMWATER MANHOLE RING AND COVER
Detail 6-9 STANDARD STORMWATER MANHOLE
Detail 6-10 STORM MANHOLE TYPICAL BASE CHANNEL DETAILS
Detail 6-11 INTERMEDIATE PLATFORM FOR MANHOLES OVER 20' IN DEPTH
Detail 7-1 CURB INLET TYPE R
Detail 7-2 GRATED INLET TYPE C
Detail 7-3 GRATED INLET TYPE 13 (GENERAL)
Detail 7-3a GRATED INLET TYPE 13 (FOR VERTICAL FACE CURB)
Detail 7-3b GRATED INLET TYPE 13 (FOR ROLLOVER CURB)
Detail 7-4a COMBINATION INLET TYPE 3 (FOR VERTICAL FACE CURB)
Detail 7-4b COMBINATION INLET TYPE 3 (FOR ROLLOVER CURB)
Detail 11-3 TYPE I AND TYPE II OUTLET DETAILS
Detail 11-7 OUTLET AND SPILLWAY DETAILS
Detail 12-1 EROSION CONTROL STRUCTURES
Detail 12-2 EROSION CONTROL STRUCTURES