

Technical Memorandum

1527 Cole Boulevard, Suite 300 Lakewood, CO 80401

T: 303.239.5400 F: 303.239.5454

Prepared for: City of Greeley, Colorado

Project Title: Terry Ranch Supply Project

Project No.: 154160.788

Technical Memorandum

Subject: Uranium Removal Pilot Study

Date: February 8, 2021

To: Adam Jokerst, Deputy Director, Water Resources, City of Greeley

Peter Champion, City of Greeley

Adam Prior, Chief Engineer, City of Greeley

From: Brown and Caldwell

Copy to: Cortney Brand, LRE

Project File

Prepared by:

Rosa Yu, Ph.D. Senior Staff Engineer

Rosa Gu

Reviewed by:

Laurie Sullivan, PE, Managing Engineer

Table of Contents

List of Figures	iii
List of Tables	iii
Section 1: Introduction	1
1.1 Background	1
1.2 Pilot Testing Objectives	2
Section 2: Pilot System Overview	2
2.1 Pilot Location	2
2.2 Pilot Feed Water Quality	5
2.3 Pilot System Design	
2.4 Pilot Equipment	6
Section 3: Pilot System Operation and Water Quality Monitoring	7
3.1 Pilot System Operation	7
3.2 Water Quality Sampling and Analysis	8
3.2.1 Radionuclides	8
3.2.2 Other Water Quality Parameters	8
Section 4: Pilot Testing Results	9
4.1 Uranium and Gross Alpha	9
4.2 Radium	12
4.3 Manganese	12
4.4 Arsenic, Iron, Selenium, and Vanadium	
4.5 Chloride and Bicarbonate	
4.6 Other Water Quality Parameters	
4.7 Conclusions	16
Attachment A: Pilot Operation Logs	A
Attachment B: Pilot Sampling Matrix	B

List of Figures

Figure 1. Pilot location at well EB-2	4
Figure 2. Z-92® Uranium removal pilot system configuration	6
Figure 3. Self-contained trailer by WRT, containing the pilot equipment	7
Figure 4. Z-92® 3-column pilot system	7
Figure 5. Uranium concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time	11
Figure 6. Gross alpha concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time	
Figure 7. Total manganese concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time	13
List of Tables	
Table 1. 2019 and 2020 Uranium and Gross Alpha Sampling Results	
Table 2. Treatment Goals and Recommendations for Uranium and Gross Alpha	2
Table 3. Well EB-2 2020 Sampling Results	5
Table 4. Pilot System Design	6
Table 5. Uranium, Gross Alpha, Gross Beta, Radium 226, and Radium 228 Pilot Sampling Matrix	8
Table 6. Uranium and Gross Alpha Pilot Sampling Results.	10
Table 7. Radium 226, Radium 228, and Combined Radium Pilot Sampling Results	12
Table 8. Total and Dissolved Manganese Pilot Sampling Results	13
Table 9. Arsenic, Iron, Selenium, and Vanadium Pilot Testing Results	14
Table 10. Chloride and Bicarbonate Pilot Sampling Results	14
Table 11. General Water Quality and Metals Sampling Results	15

Section 1: Introduction

1.1 Background

The City of Greeley's (Greeley) water demand has increased nearly five-fold over the last 50 years. In response, Greeley evaluated several strategies to develop reliable and resilient water supplies to meet future demands. One of the approaches is aquifer storage and recovery (ASR), using the Upper Laramie aquifer underlying the Terry Ranch land parcels for groundwater supply and storage of treated surface water.

As part of the evaluation of this ASR concept, source water wells were sampled at the Terry Ranch site in 2019 and 2020 and groundwater quality was assessed in comparison with treated surface water produced by Greeley's existing Bellevue Water Treatment Plant (WTP) to determine treatment needs.

Results from groundwater sampling at Terry Ranch showed that uranium and gross alpha concentrations exceeded the respective National Primary Drinking Water Regulations (NPDWRs) maximum contaminant levels (MCLs) in select wells. Detailed results are shown below in Table 1 with MCL exceedance highlighted in blue.

	Table 1. 2019 and 2020 Uranium and Gross Alpha Sampling Results											
						201	9	2020				
Contaminant	Units	MCL	Goal	Well	Method	MDL/RL	72-hour Composite Concentration	Method	MDL/RL	48-hour Composite Concentration		
				WWR-1			43			40.6		
				WWR-2	EPA 200.8	1.0 (RL)	14		0.2 (MDL)	19.9		
		30	Non-Detect	WWR-3			15	EPA 200.8		28.3		
Uranium, Total	µg/L			WWR-4			19			19.8		
				WWR-5			12			13.6		
				Flow-weighted Average	/	/	24.4	/	/	28.6		
				WWR-1			27			31		
				WWR-2			5.7			16.9		
				WWR-3	EPA 900.0	3.0 (MDL)	8.2	EPA 900.0	-1000 (RL)	23.4		
Gross Alpha	pCi/L	15	Non-Detect	WWR-4	000.0		8.8		(112)	19.4		
				WWR-5			7.2			6.4		
				Flow-weighted Average	/	/	14.0	/	/	22.9		

μg/L = micrograms per liter

EPA = Environmental Protection Agency

MDL = method detection limit

pCi/L = picocuries per liter

RL = reporting limit,

WWR = Wingfoot Water Resources

After reviewing a series of treatment approaches (details of the review are referred to Terry Rach ASR Water Quality and Treatment Technical Memorandum, Brown and Caldwell, 2019), the treatment goals and recommended treatment methods for uranium and gross alpha are listed below in Table 2.

	Table 2. Treatment Goals and Recommendations for Uranium and Gross Alpha										
Contaminant	Units	Recommended Treatment	Method	Method Detection Limit (MDL)	Treatment Goal						
Uranium	μg/L	Anion exchange resin	EPA 200.8	0.2	Non-detect (i.e., <0.2 µg/L)						
Alpha, Gross	pCi/L	Anion exchange resin	EPA 900.0	3.0	Non-detect (i.e., <3.0 pCi/L)						

1.2 Pilot Testing Objectives

Inspection activities served as an opportunity for Greeley to have their consultants evaluate Terry Ranch for potential fatal flaws that could impact the Terry Ranch Water Supply Project with regard to water quality, treatment, and environmental conditions. As part of inspection activities, a 30-day anion exchange pilot test was conducted. Water Remediation Technology's (WRT) Z-92® Uranium Treatment Process was selected for pilot testing. The main objectives of this pilot study were:

- 1. Demonstrate the effectiveness ("proof of concept") of the anion exchange treatment system in removing uranium and gross alpha from groundwater at Terry Ranch to below their respective detection limits.
- 2. Confirm the removal of gross alpha because of uranium removal. Gross alpha can be removed by uranium-specific resins depending on its composition. Gross alpha contributors can be either cationic or anionic and only the anionic emitters can be removed by anion exchange resins. Based on the available groundwater quality data, the primary cationic alpha emitter, radium 226 (Ra-226), was shown to be present in source water wells at very low concentrations, ranging from 0.1 to 0.4 pCi/L.
- 3. Examine the potential impact of anionic foulants on uranium and gross alpha removal. Although the selected anion exchange resin has strong selectivity for uranium, the presence other anionic constituents in water, including dissolved organic matter (often characterized by total organic carbon [TOC]), carbonate, bicarbonate, sulfate, metal complexes, etc., could potentially compete with uranium for adsorption and/or ion exchange sites, and thus negatively impacting uranium treatment performance.

Section 2: Pilot System Overview

2.1 Pilot Location

The pilot system was located at the well field at Terry Ranch. Feed water for the pilot was pumped from well exploratory borehole (EB)-2 (Figure 1), one of the two monitoring wells constructed in the exploratory boreholes. Although well WWR-1 was initially proposed as the pilot feed supply because it contains highest uranium concentration among all existing monitoring wells (Table 1), it was not selected for pilot testing because of challenges discharging the excess water which would have included either:

- 1. Storing and transporting the excess flow (i.e., 498 to 698 gallons per minute [gpm]) to the headworks of Greeley's wastewater treatment facility or,
- 2. Securing a permit from Colorado Department of Public Health and Environment (CDPHE) to discharge the excess flow via either surface or ground. This process was too uncertain and potentially lengthy.

On the other hand, wells EB-1 and EB-2 in the exploratory boreholes could be pumped at a flow rate of 20 to 25 gpm, which is more appropriate for this pilot application. Given the scheduling conflicts with the injection testing to be conducted in well EB-1, well EB-2 was selected as the final location for the pilot.

Technical Memorandum Uranium Removal Pilot Study

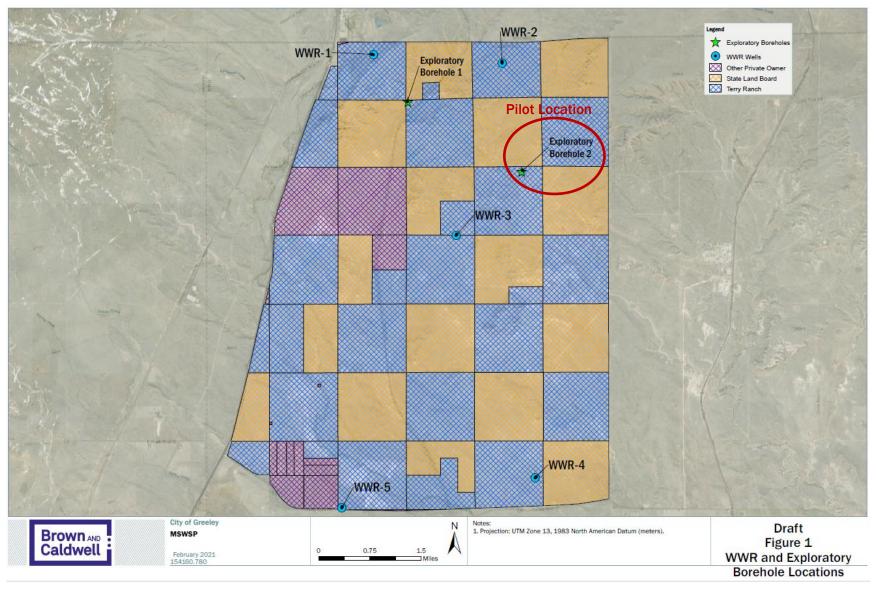


Figure 1. Terry Ranch well field and pilot location at well EB-2.

2.2 Pilot Feed Water Quality

EB-2 was first drilled, sampled, and its water quality characterized in 2020. Key sampling results are summarized below in Table 3. Findings of the pilot feed water quality include:

- 1. Uranium concentration in well EB-2 was 20.7 µg/L.
- 2. Gross alpha was in well EB-2 was 13.7 pCi/L during the original 2020 sampling, which was below the MCL of 15 pCi/L.
- 3. Total manganese concentration in well EB-2 was 83.1 µg/L, which exceeded the Secondary Maximum Contaminant Level (SMCL) of 50 µg/L and Greeley's manganese treatment goal of 20 µg/L.
- 4. Consistent with other well samples across Terry Ranch, potential foulants were not detected at concentrations that are alarming.

	Table 3. Well EB-2 2020 Sampling Results										
Туре	Contaminant	Units	MCL	SMCLa	Greeley Treatment Goal	EB-2 Sampling Result	Reporting Limit				
Tourst Contominant	Uranium, Total	μg/L	30	-	Non-detect	20.7	0.2				
Target Contaminant	Gross Alpha	pCi/L	15	-	Non-detect	13.7	-1000				
Cationia Cross Alpha Emittor	Radium 226	pCi/L	-	-	-	0.3	0.2				
Cationic Gross Alpha Emitter	Radium 228	pCi/L	-	-	-	1.1	0.3				
	Arsenic, Dissolved	μg/L	10		-	0.8	0.6				
	Arsenic, Total	μg/L	10	-	-	5.3	0.6				
	Bicarbonate as CaCO ₃	mg/L	-	-	-	190.6	4				
	Carbonate as CaCO ₃	mg/L	-	-	-	<4	4				
	Chloride	mg/L	-	250	-	4.8	0.01				
Potential Foulant	Fluoride	mg/L	4	2	-	0.45	0.09				
	Manganese, Dissolved	μg/L				46.3	0.8				
	Manganese, Total	μg/L	-	50	20	83.1	0.8				
	Nitrate as N	mg/L	10	-	-	1.13	0.05				
	Sulfate	mg/L	-	250	-	19.43	0.01				
	Total Dissolved Solids	mg/L	-	500	-	259	5				

a, SMCL: National Secondary Drinking Water Regulations secondary MCLs.

2.3 Pilot System Design

The WRT Z-92® uranium treatment process is designed to remove uranium from water in partially packed and fluidized resin beds. The pilot system configuration is shown below in Figure 2.

mg/L milligram(s) per liter

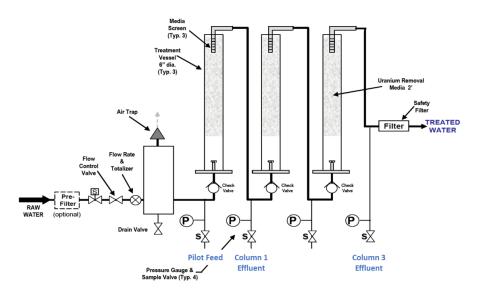


Figure 2. Uranium removal pilot system configuration

The pilot system consisted of three 6-inch internal diameter (ID) columns, each containing 3.5 feet of the Z-92® anion exchange resin. The mass of resin was approximately 22 pounds per column. Design flow rate was 1.7 gpm, resulting in an empty bed contact time (EBCT) of 3.0 minutes per column and a total system EBCT of 9 minutes. Details of the pilot system are listed in Table 4.

	Table 4. Pilot System Design										
Parameter	Units	Equation	Value								
Column Inner Diameter, ID	inch	-	6								
Cross Sectional Area, A	inch ²	$A = \pi \cdot (ID/2)^2$	0.2								
Wall madde Flac Balls O	gal/min		1.7								
Volumetric Flow Rate, Q	gal/day	$Q = v \cdot A$	2,448								
Hydraulic Loading Rate, v	(gallons/min)/ft²	v = Q/A	8.7								
Bed Length per Column	feet	$L = v \cdot EBCT$	3.5								
EBCT per Column	minute	EBCT = L/v	3.0								
Resin Mass per Column	pounds	$W = V_b \cdot \rho_{Z-92}$	22								

It is noteworthy that a full-scale Z-92® system typically consists of two stages in series (i.e., primary, and secondary stages) with an EBCT of 3.0 to 3.5 minutes for each stage. Due to the short duration of this testing, the primary goal was "proof of concept" to show that uranium was removed to non-detect in the first stage. The second and third stage were included as a precaution in the event uranium breakthrough occurred which was highly unlikely.

2.4 Pilot Equipment

Pilot equipment including pump, columns, valves, flow meter, pipe, and fittings were assembled and mounted in a self-contained trailer prior to the pilot study. The trailer was then transported to the Terry Ranch well field and was commissioned adjacent to well EB-2. Figures 3 and 4 show the trailer and the interior Z-92® pilot system. Pilot discharge was collected on site and was hauled offsite and disposed of at Greeley's wastewater treatment facility.

Figure 3. Self-contained trailer by WRT, containing the pilot equipment

Figure 4. 3-column anion exchange pilot system

Section 3: Pilot System Operation and Water Quality Monitoring

3.1 Pilot System Operation

Pilot feed was continuously pumped from well EB-2 for the entire duration of the pilot study from November 10, 2020 to December 10, 2020. All three columns were operated in an up-flow configuration,

with the flow exiting the top of the first column entering the bottom of the second column, with the same flow path through the third column. In this flow direction, the resin bed is partially expanded at design flow rate to maximize uranium contact with the media and to allow any particulates in the water to pass through the resin bed, eliminating the need for on-site column backwash.

The Z-92® media was not exchanged over the course of pilot testing. After the completion of the pilot study, the spent media was returned to the WRT facility in Westminster, Colorado for further analysis and final disposal at a licensed facility.

Daily operation of the pilot system included checking the feed water flow rate and connections to ensure there were no leaks. An operation log was utilized during the study to record all field observations, adjustments to the pilot system, flow data, and other relevant information. The log sheets are attached in Appendix A for reference.

3.2 Water Quality Sampling and Analysis

3.2.1 Radionuclides

Sampling for radionuclides including uranium, gross alpha, gross beta, radium 226, and radium 228 in the pilot feed, column 1 effluent, and column 3 effluent (Figure 2) was conducted once during pilot system startup and twice per week for five consecutive weeks as listed below in Table 5. The uranium and gross alpha treatment effectiveness of the primary stage was evaluated by sampling radionuclides in the column 1 effluent. Column 3 effluent was monitored to demonstrate the overall achievement of the treatment goal for uranium and gross alpha.

Table 5. U	Table 5. Uranium, Gross Alpha, Gross Beta, Radium 226, and Radium 228 Pilot Sampling Matrix										
		Throughput		Sample Locatio	n						
Week	Date	(gallon)	Pilot Feed	Column 1 Effluent	Column 3 Effluent						
Start-up	11/10/2020	76.5	Х	Х	Х						
4	11/11/2020	2,327.5	Х	Х	Х						
1	11/13/2020	4,825.9	Х	Х	Х						
0	11/17/2020	14,725.5	Х	Х	Х						
2	11/19/2020	19,475.4	Х	Х	Х						
2	11/22/2020	26,870.5	Х	Х	Х						
3	11/23/2020	29,093.6	Х	Х	Х						
4	12/01/2020	48,620.3	Х	Х	Х						
4	12/03/2020	53,618.2	Х	Х	Х						
-	12/08/2020	66,115.0	Х	Х	Х						
5	12/10/2020	70,948.0	Х	Х	Х						

Uranium samples were analyzed by Colorado Analytical using EPA method 200.8, whereas samples for gross alpha and gross beta were analyzed by Energy Laboratories based on EPA method 90s0.0. Radium 226 and radium 228 were analyzed also by Energy Laboratories according to EPA method 903.0.

3.2.2 Other Water Quality Parameters

Since total manganese concentration in well EB-2 (83.1 μ g/L, Table 3) exceeded the SMCL of 50 μ g/L during the original 2020 sampling, its concentrations in the pilot feed and column 1 and 3 effluents were monitored at the same frequency as for the radionuclides (Table 5). Although dissolved manganese is not

expected to be removed through anion exchange because manganese is a divalent cation, particulate manganese could potentially be removed via solid retention by the resin bed (i.e., media filtration). Manganese sampling was aimed at assessing if certain level of total manganese treatment could be achieved by removing its particulate form.

Sampling of other water quality parameters in the pilot feed and column 3 effluent, including total and dissolved metals, total and dissolved cations, total anions, TOC, UV absorbance at 254 nm, alkalinity, total dissolved solids, and hardness, etc. was performed once during pilot system start-up, a second time halfway through the pilot study in week 3, and a third time at the completion of the pilot study in week 5. Monitoring of the proposed water quality parameters was to inform any potential impact of foulants such as TOC, sulfate, metal complexes, carbonate, and bicarbonate, etc. on uranium and gross alpha removal by the Z-92® media. Detailed sampling matrix and the proposed analytical methods are summarized in the *Pilot Sampling and Analysis Plan* in Appendix B.

Section 4: Pilot Testing Results

4.1 Uranium and Gross Alpha

The uranium and gross alpha sampling results are summarized below in Table 6. Feed samples were collected immediately prior to the first column. Intermediate samples were collected after column 1 and final discharge samples were taken after column 3. Accordingly, Figures 5 and 6 show uranium and gross alpha concentrations in the pilot feed and columns 1 and 3 effluents as a function of system throughput in number of days in operation (Equation 1).

$$Number\ of\ Days\ in\ Operation = \frac{Cumulative\ Volume\ of\ Water\ Treated}{Volumetric\ Flow.\ O} \qquad (Equation\ 1)$$

Figure 5 shows that uranium concentration in the pilot feed increased from 12.5 μ g/L to approximately 30 μ g/L over the first 6 days of pilot testing and then plateaued at an average uranium concentration of 32 μ g/L for the remaining 4 weeks.

Uranium in stage 1 effluent was constantly below the reporting limit of $0.2 \,\mu\text{g/L}$ over the entire course of the pilot study. These data demonstrate that the Z-92® system is effective in removing uranium from groundwater at Terry Ranch to consistently meet the treatment goal of non-detect.

Gross alpha followed many of the similar trends as those noted for uranium. Gross alpha concentration in the pilot feed increased from approximately 11 pCi/L during pilot start-up and leveled off at an average of 24 pCi/L after the first week of testing.

Gross alpha was consistently below the minimal detectable concentration (MDC) in stage 1 effluent (note that MDCs are specific to each sample and varied from 2.2 to 3.2 pCi/L across all samples analyzed). The simultaneous removal of uranium and gross alpha indicates that the anionic alpha emitter, uranium, is the predominant contributor to gross alpha in the groundwater at Terry Ranch.

Technical Memorandum Uranium Removal Pilot Study

	Table 6. Uranium and Gross Alpha Pilot Sampling Results.												
		Throughput	Days of Operation		Sample Loc			ation			Sample Location		
Week	Date	gallons	days	Radionuclide	Units	Feed	Column 1	Column 3	Radionuclide	Units	Feed	Column 1	Column 3
Ola I	11/10/2020	76.5a	0			12.5	<0.2b	<0.2			11.6	<2.7c	<2.2
Start-up	11/10/2020	76.5a	0			12.9	NSd	NS		pCi/L	17.2	<2.5	<2.2
4	11/11/2020	2327.5	1			17.7	<0.2	<0.2			11	<2.4	<2.2
1	11/13/2020	4825.9	2			25.8	<0.2	<0.2			19.6	<2.7	<2.9
	11/17/2020	14725.5	6			29.7	<0.2	<0.2			26	<2.5	<3.2
•	11/17/2020	14725.5	6			30.6	NS	<0.2			24.7	NS	<3.0
2	11/19/2020	19475.4	8		- 4	33.1	<0.2	<0.2			22.2	<2.9	<2.8
	11/19/2020	19475.4	8	Uranium, Total	µg/L	33.8	NS	<0.2	Gross Alpha		16.2	NS	<2.5
2	11/22/2020	26870.5	11			32	<0.2	<0.2			23.4	<2.5	<3.2
3	11/23/2020	29093.6	12			31.3	<0.2	<0.2			20.9	<3.4	<2.7
	12/1/2020	48620.3	20			32.2	<0.2	<0.2			24.1	<3.0	5.5
4	12/3/2020	53618.2	22			31.2	<0.2	<0.2			27.8	<3.2	<2.4
	12/8/2020	66115	27			30.3	<0.2	<0.2			24.3	<2.2	<2.8
5	12/8/2020	66115	27			30	NS	<0.2			27	NS	<2.9

a. Duplicate samples were collected at select sample locations during pilot start-up and in weeks 2 and 5.

b. Uranium concentration was below its reporting limit of 0.2 μ g/L using EPA method 200.8 by Colorado Analytical.

c. Gross alpha was not detected at the minimum detectable concentration (MDC) using EPA method 900.0 by Energy Laboratories. MDCs of gross alpha are specific to individual samples.

d. NS-Not sampled.

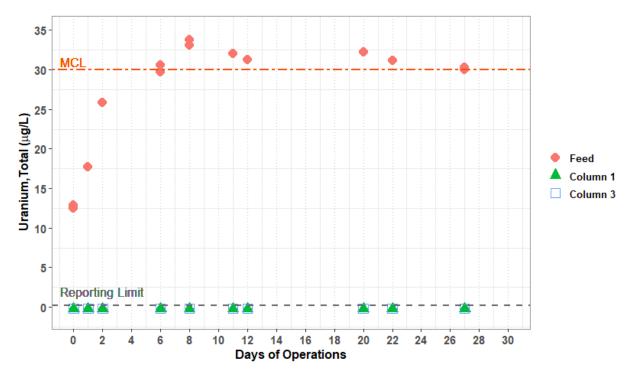


Figure 5. Uranium concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time

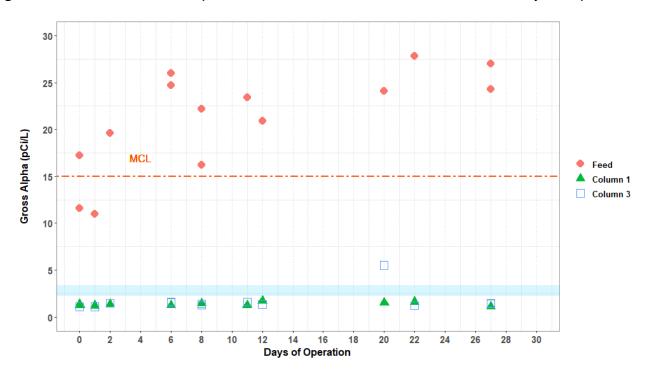


Figure 6. Gross alpha concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time

The light blue band indicates the upper and lower boundaries of minimum detectable concentrations (MDCs) of gross alpha across all samples analyzed.

4.2 Radium

The radium sampling results are summarized below in Table 7. Samples of pilot feed and columns 1 and 3 effluents were collected every week during the pilot start-up and testing. Results show that the cationic alpha emitter, Ra-226, was present in the pilot feed at low concentrations, ranging from 0.07 to 0.4 pCi/L. As anticipated, Ra-226 was not removed by the anion exchange resin and would contribute to gross alpha activity although the contribution was almost negligible.

	Table 7. Radium 226, Radium 228, and Combined Radium Pilot Sampling Results											
			Ra-226 (pCi,	/L)		Ra-228 (pCi,	/L)		Combined Ra (p	Ci/L)		
Week	Date	Feed	Column 1	Column 3	Feed	Column 1	Column 3	Feed	Column 1	Column 3		
01-1	11/10/2020	0.1	0.3	0.2	1.3	1.4	1.8		Not Sample	d		
Start-up	11/10/2020	0.2	0.2	0.4	1.4	0.8	1.1		Not Sampled			
	11/11/2020	0.08	0.2	0.2	1.1	1.5	1.9	1.2	1.7	2.1		
1	11/13/2020	0.07	0.2	0.07	1.4	1.5	1.3	Not Sampled				
	11/17/2020	0.2	0.1	0.2	0.8	1.5	1.1	1	1.6	1.3		
•	11/17/2020	0.1	Not Sampled	0.06	1.2	Not Sampled	1.5	1.3	Not Sampled	1.5		
2	11/19/2020	0.1	0.2	0.1	0.7	1.3	2.0	0.8	1.5	2.1		
	11/19/2020	0.1	Not Sampled	0.02	0.7	Not Sampled	1.5	0.9	Not Sampled	1.5		
	11/22/2020	0.2	0.3	0.2	1.3	1.2	1.4	1.5	1.6	1.7		
3	11/23/2020	0.2	0.1	0.1	1.3	1.1	1.3	1.5	1.2	1.4		
	12/1/2020	0.2	0.2	0.3	0.7	1.4	0.7	0.8	1.6	1.0		
4	12/3/2020	0.3	0.2	0.2	0.9	1.2	1.1	Not Sampled				
	12/8/2020	0.4	0.1	0.2	1.2	0.7	1.3		Not Sample	d		
5	12/8/2020	0.1	Not Sampled	0.2	0.6	Not Sampled	0.9		Not Sample	d		

4.3 Manganese

Total and dissolved manganese sampling results are listed below in Table 8. Results suggest that manganese in the pilot feed was mainly in its dissolved form and its concentration decreased with increasing well EB-2 pumping time. Due to the cationic nature of manganese, the anion exchange resin had no impact on manganese concentration as shown in Figure 7.

	Table 8. Total and Dissolved Manganese Pilot Sampling Results												
		Throughput		Manganese, Dis	solved		Manganese, 1	Total					
Week	Date	gallons	Feed	Column 1	Column 3	Feed	Column 1	Column 3					
Ctout	11/10/2020	76.5	29.2	29.9	30.7	30.2	30.3	30.7					
Start-up	11/10/2020	76.5	27.6	27.9	28.1	27.9	28.7	28.5					
4	11/11/2020	2327.5	19	18.9	19.4	19.4	19.5	20.2					
1	11/13/2020	4825.9	13.7	13.1	13.2	13.7	13.5	13.6					
	11/17/2020	14725.5	11	11	11.2	11.3	11	11.2					
2	11/19/2020	19475.4	10.6	10.5	10.7	10.7	10.7	10.9					
	11/19/2020	19475.4	8.9	Not Sampled	9		Not Sample	d					
•	11/22/2020	26870.5	9	9.1	9.4	9.3	9.1	9.5					
3	11/23/2020	29093.6	9	9.2	9.3	9	9.3	9.5					
	12/1/2020	48620.3	8	7.9	8.2	8	8	8.2					
4	12/3/2020	53618.2	7.8	7.7	7.8	7.8	8	7.9					
5	12/8/2020	66115	7.8	7.9	8	7.8	8.1	8.1					

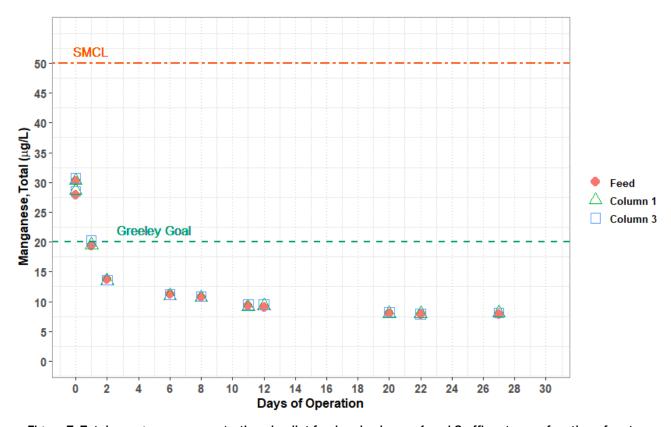


Figure 7. Total manganese concentrations in pilot feed and columns 1 and 3 effluents as a function of system operation time

4.4 Arsenic, Iron, Selenium, and Vanadium

Other metal contaminants, including arsenic, iron, selenium, and vanadium were also removed by the Z-92® media as indicated by results shown in Table 9. However, adsorption of these metal contaminants to the Z-92® media is expected to occur only during the early service period and is unlikely to continue over extended operation time. For instance, arsenic breakthrough was observed in column 3 effluent after 3 weeks of pilot system operation, indicating its breakthrough from all three resin beds.

Tabl	Table 9. Arsenic, Iron, Selenium, and Vanadium Pilot Testing Results												
Week		Sta	rt-up	Week 3									
Date		11/10	0/2020	11/2	2/2020	11/2	11/23/2020						
Sample Loc	Feed	Column 3	Feed	Column 3	Feed	Column 3							
Arsenic	µg/L	6.4/6.7a	0.3	2.8	0.3	2.9	1.9						
Iron	µg/L	27/21a	<5	5	<5	5	<5						
Selenium	µg/L	1.7 <0.8		1.4	<0.8	1.4	<0.8						
Vanadium	μg/L	8	<1	4	<1	4	<1						

a. Duplicate pilot feed samples were collected for arsenic and iron on the day of pilot start-up. Results of the duplicate samples are shown before and after the "/".

4.5 Chloride and Bicarbonate

Among other water quality parameters monitored in the pilot feed and treated effluents, changes were observed in chloride and bicarbonate concentrations across the treatment process.

As shown in Table 10, chloride concentration significantly increased from 3.4 mg/L in the pilot feed to approximately 130 mg/L in column 3 effluent during pilot start-up. This is because the mobile ions in the anion exchange resin bead are chloride ions, which is the standard delivery form for many anion exchange resins. According to WRT, most of the chloride ions would be exchanged by divalent anions in the feed water after 50 to 100 bed volumes of water processed (i.e., 255 to 510 gallons). This is evidenced by the significant decrease in bicarbonate concentration in treated water during pilot start-up. However, exchange between chloride and bicarbonate ions did not continue after pilot start-up as their concentrations in column 3 effluent approximating those in the pilot feed during sampling in week 3.

	Table 10. Chloride and Bicarbonate Pilot Sampling Results.											
W	eek		Start	-up		Week 3						
Da	ate		11/10/	2020		11/2	22/2020	11/23/2020				
Sample	Location	Feed	Column 3	Feed	Column 3	Feed	Column 3	Feed	Column 3			
Chloride	mg/L	3.36	129.2	3.42	132.32	4.78	5.63	4.83	5.62			
Bicarbonate	mg/L as CaCO ₃	167.3	7.2	170	7.3	234.9	245.6	239.6	250.4			

Brown AND Caldwell

4.6 Other Water Quality Parameters

Other than the aforementioned constituents, no significant change to water quality was observed through the anion exchange treatment process. Table 11 lists the sampling results of general water quality parameters and total and dissolved metals monitored during pilot testing.

	Table 1	L1. General \	Water Quality a	and Metals Sa	mpling Ro	esults		
			Star	t-up		W	eek 3	
			11/10	/2020	11/2	2/2020	11/23/2020	
Category	Contaminant	Units	Feed	Column 3	Feed	Column 3	Feed	Column 3
	Alkalinity, Total as CaCO ₃	mg/L	167.3/170	7.2/1.3	234.9	245.6	239.6	250.4
	Bromate	ug/L	<5	<5	<5	<5	<5	<5
	Bromide	mg/L	<0.01	<0.01	0.25	0.27	0.28	0.3
	Chlorate	mg/L	Not Sampled	Not Sampled	<0.01	<0.01	<0.01	<0.01
	Chlorite	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
General	Fluoride	mg/L	0.65/0.64	0.23/0.42	0.38	0.37	0.39	0.39
Water	Hardness, Total as CaCO ₃	mg/L	140.8/141.6	141.6/140.8	191.7	187.8	190.3	198.6
Quality	Nitrate as N	mg/L	1.36/1.27	<0.05	0.52	0.72	0.45	0.74
	Nitrite as N	mg/L	Not Sampled	<0.03	<0.03	<0.03	<0.03	<0.03
	Sulfate	mg/L	17.4/16.86	0.31/0.34	14.86	0.26	14.87	0.32
	Total Dissolved Solids	mg/L	225/186	339/342	299	271	282	270
	TOC	mg/L	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
	UV 254 Transmittance	%	99.4/99.7	96.7/97.9	99.6	99.7	99.5	99.8
	Aluminum, Dissolved	μg/L	1	6/13	<1	<1	1	<1
	Aluminum, Total	μg/L	3	6/13	<1	<1	4	1
	Antimony, Dissolved	μg/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
	Antimony, Total	µg/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
	Barium, Dissolved	μg/L	56.3/57.9	56.2/58.6	24.6	24.7	24.6	24.6
	Barium, Total	µg/L	58.9/56.4	58.6/56.5	24.9	24.8	24.6	24.7
	Beryllium, Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Beryllium, Total	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Boron, Dissolved	µg/L	150/100	120/110	40	40	40	40
Metals	Boron, Total	µg/L	160/110	120/110	40	40	40	40
	Cadmium, Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Cadmium, Total	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Calcium, Dissolved	mg/L	42.4/42.6	42.3/41.3	58.1	56.2	57.4	59.3
	Calcium, Total	mg/L	42.6/43.1	42.8	58.1	56.6	57.4	60.7
	Chromium, Dissolved	µg/L	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
	Chromium, Total	µg/L	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
	Cobalt, Dissolved	µg/L	0.4	0.4	<0.2	<0.2	<0.2	<0.2
	Cobalt, Total	µg/L	0.4	0.4	<0.2	<0.2	<0.2	<0.2
	Copper, Dissolved	µg/L	1.5/0.9	6.8/3.9	<0.8	<0.8	<0.8	<0.8

Brown AND Caldwell

	Table 1	.1. General \	Water Quality	and Metals Sa	mpling Re	esults		
			Star	t-up		W	leek 3	
			11/10	/2020	11/22/2020		11/23/	/2020
Category	Contaminant	Units	Feed	Column 3	Feed	Column 3	Feed	Column 3
	Copper, Total	μg/L	1.9/1.1	7.2/4.2	<0.8	1	<0.8	0.9
	Lead, Dissolved	μg/L	0.5/0.3	0.2/0.4	0.2	0.2	0.2	0.1
	Lead, Total	μg/L	0.7/0.4	0.3/0.4	0.2	0.2	0.2	0.1
	Lithium, Dissolved	μg/L	Not Sampled	Not Sampled	26	23	24	23
	Lithium, Total	μg/L	Not Sampled	Not Sampled	32	34	33	35
	Magnesium, Dissolved	mg/L	8.06/8.26	8.3/8.21	11.24	11.31	11.32	11.3
	Magnesium, Total	mg/L	8.35/8.27	8.42/8.29	11.33	11.31	11.42	11.43
	Mercury, Dissolved	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Mercury, Total	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Nickel, Dissolved	μg/L	2.8/1.8	2.9/3.8	1.5	1.1	0.9	0.9
	Nickel, Total	μg/L	3/2.5	3.4/3.9	1.5	1.2	0.9	0.9
	Potassium, Dissolved	mg/L	5.1	5.1/5.2	7.1	6.8	7	6.8
	Potassium, Total	mg/L	5.2	5.2	7.1	6.9	7	6.8
	Silica, Dissolved as Si	mg/L	20.3/19.8	20.2/19.4	13.2	13.6	13.6	14.1
	Silver, Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Silver, Total	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Sodium, Dissolved	mg/L	17	16.8/17.5	19.1	19.5	20.2	19.5
	Sodium, Total	mg/L	17.8/17.3	17.5	20	19.6	20.2	19.7
	Strontium, Dissolved	mg/L	0.57/0.584	0.593/0.59	0.743	0.768	0.769	0.784
	Strontium, Total	mg/L	0.59/0.591	0.601/0.602	0.761	0.768	0.773	0.785
	Thallium, Dissolved	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Thallium, Total	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Zinc, Dissolved	μg/L	332/316	347/327	289	305	301	303
	Zinc, Total	μg/L	372/339	373/354	304	308	303	312

Note: Duplicate pilot feed and column 3 effluent samples were collected for select contaminants on the day of pilot start-up. Results of the duplicate samples are shown before and after the "/".

4.7 Conclusions

The anion exchange system tested consistently removed uranium and gross alpha to non-detectable levels over the entire course of the pilot study (i.e., 30 days). The removal of bicarbonate, and several metal contaminants including iron, arsenic, selenium, and vanadium was observed early in the pilot testing period and did not have any noticeable impact on uranium removal. In general, there was no significant change in water quality through the anion exchange treatment process other than the removal of uranium and gross alpha.

Attachment A: Pilot Operation Logs

Location: Greeley, CO - Well Field

Daily Operation Log

Week Of:

Date	Operator	Time In	Time Out	Flow Rate Actual (gpm)	Flow Rate Adjusted (gpm)	Cumulative Totalizer Flow (gal) / Comments	Samples Taken? Yes No
Mon 11/9/20	74						
Tue 11/10/20	D. Jones. start	12:30		1.7	1.7	76.5	~
Wed 11/11/20	DTrejo	11:24	12:50	1.6	1.7	2327.5	V
Thu	U						
Fri 11/13/20	DTrejo & D. Jones.	10:20	12:04	0.47	1.76	4825.9	~
Sat	J .						
Sun				7			

Date	Fêed Pressure	Göl 1 Pressure	Col 2 Pressure	Col 3 Pressure	Discharge Pressure
Mon					*
Tue 11/18/20	11.5	7.5	5.0	-0-	-0-
Wed 11/11/20	13	10	5.5	- 0	-0-34
Thu					
Fri 11/13/20	11	8,5	5	0	0
Sat	-				
Sun					

PLEASE EMAIL THIS LOG SHEET WEEKLY TO DAVID JONES djones@wrtnet.com

Water Remediation Technology LLC 901 W. 116th Avenue, Suite 400 Westminster, Colorado 80234 Ph: (303) 424-5355 • Fx: (303) 362-7664

Notes:	

Location: Greeley, CO - Well Field

Daily Operation Log

Week Of: Nov. 16 - Nov 22

Date	Operator	Time In	Time Out	Flow Rate Actual (gpm)	Flow Rate Adjusted (gpm)	Cumulative Totalizer Flow (gal) / Comments	Samples Yes	Taken?
Mon ///(6/202	Cole E. Gusteson	0930		67	Ada Estes	4 6269		V
Tue 11/17/20	Biana Trejo	930	#35	1.706	none	14725.5	V	
Wed	O							
Thu 11/19/20	Diana Trejo	9:50	11:50	1.71	none	19475.4	V	
Fri 11/20/20	Diana Trejo D. Johes	9:55		1.74	NONE	21936.0		V
Sat								
Sun 12 10	72-Trejo	11:24	13:55	1.706	None	26870.5	V	

Date	Feed Pressure	Col 1 Pressure	Col 2 Pressure	Col 3 Pressure	Discharge Pressure
Mon /1/16/2020	10,5	8.5	5.5	-0-	-0-
Tue 17 20	11	9	5.5	0	0
Wed					
Thu 11/19/20	10.5	8.5	5	0	0
Fri 11 20 20	11	8.5	5.5	-0	-
Sat					
sun 22 20	10.5	8.5	5.5	0	0

PLEASE EMAIL THIS LOG SHEET WEEKLY TO DAVID JONES djones@wrtnet.com

Water Remediation Technology LLC 901 W. 116th Avenue, Suite 400 Westminster, Colorado 80234 Ph: (303) 424-5355 • Fx: (303) 362-7664

Notes:		
<u></u>		

Location: Greeley, CO - Well Field

Daily Operation Log

Week Of:

Date	Operator	Time In	Time Out	Flow Rate Actual (gpm)	Flow Rate Adjusted (gpm)	Cumulative Totalizer Flow (gal) / Comments	Samples Yes	s Taken?
Mon 23 20 Tue /24/20 Wed /25/20	0 0 1 0		11:46	4		290 93.6	V	X
Thuff Fri [1/27/20	Chustasan	10,00	10:18	1.696	No Adjusted	734034,9 38937.8		X
Sat								

Date	Feed Pressure	Col 1 Pressure	Col 2 Pressure	Col 3 Pressure	Discharge Pressure
Mon	10.5	8.5 8.5 8.5	5.5 5.5	9	0
Fri	0,11	8,1	5,9	ý	ø

PLEASE EMAIL THIS LOG SHEET WEEKLY TO DAVID JONES djones@wrtnet.com

Water Remediation Technology LLC 901 W. 116th Avenue, Suite 400 Westminster, Colorado 80234 Ph: (303) 424-5355 • Fx: (303) 362-7664

Notes:	<u> </u>

Location: Greeley, CO - Well Field

Daily Operation Log

Week Of: Nov. 30 H

Date	Operator	Time In	Time Out	Flow Rate	Flow Rate	Cumulative Totalizer Flow (gal) / Comments		Taken?
u == /) 22 20	1110	41.43	Out	Actual (gpm)	Adjusted (gpm)	/ / / 2 0 O	Yes	No
Mon //-30-20	C. Crastason	11:45	•	1. +(100 Adjust	- 46380		8
	Direjo	9:35	11:00	1.76	No Adjust	48620.3	1	
Wed / 2 - 02 - 20	C. Esustabay	11:45	12:00	1.76	No Adrot	51396,2		X
Thu 12-03-20	Dianetrejo	9:00	10:38	1.79	No Adjust	53618.2	V	
Eri 12-04-20	C. GustaBer	8:40	8:50	1,79	No Adrst	56 136.5		
Sat.	,							
Sun								

Date	Feed Pressure	Col 1 Pressure	Col 2 Pressure	Col 3 Pressure	Discharge Pressure
Mon //- 30 - 20 Tue 2 - 01 - 20	11.0	8.9	6.0		0
Wed /2 -02-26	11.5	8.9	5,8	9	4
Thu 12-03-20 Fri 12-04-20	10.5	8.5	50	-0-	-0-
Sat	(0/3	0,0	3,0	(D)	9
Sun					

PLEASE EMAIL THIS LOG SHEET WEEKLY TO DAVID JONES djones@wrtnet.com

Water Remediation Technology LLC 901 W. 116th Avenue, Suite 400 Westminster, Colorado 80234 Ph: (303) 424-5355 • Fx: (303) 362-7664

Notes:			
1-			
E.			
E. We SaL			
your.			

Location: Greeley, CO - Well Field

Daily Operation Log

	Da
Week Of:	Dec

Sat Date	Operator	Time In	Time Out	Flow Rate Actual (gpm)	Flow Rate Adjusted (gpm)	Cumulative Totalizer Flow (gal) / Comments	Samples Yes	Taken? No
Mon 12-2-20	C. Gust Isan	1125	1135	1.64	1706	63910,9		X
Tue 12/8/20	D.Trefo.	9:13		1.69	1.706	66115.0	V	
Wed (2/09/20	C. Gustofsen	10,37	10,45	1.708	No Adject	68618,8		X
Thu 12/10/20	D-Trefo	8:45	1130	1.691	1.706	70947.0		
Fri	O							
Sat								
Sun								

Date	Feed Pressure	Col 1 Pressure	Col 2 Pressure	Col 3 Pressure	Discharge Pressure
Mon 12-7-20	10.5	8.1	5.0	9	0
Tue \2/8/20 Wed () /4/20	10.5	8.5	5.5	0	0
Thu 12/10/10	10.0	8.5	5.5	9	9
Fri			7.5		
Sat					
Sun					

PLEASE EMAIL THIS LOG SHEET WEEKLY TO DAVID JONES djones@wrtnet.com

Water Remediation Technology LLC 901 W. 116th Avenue, Suite 400 Westminster, Colorado 80234 Ph: (303) 424-5355 • Fx: (303) 362-7664

Notes:	12/10/20	1200 3	Sample		
	12/10/20	REMOVE	PILOT TRAIL	=	
					10

Attachment B: Pilot Sampling Matrix

												Ranch Gr <u>ou</u> i	ıdwate <u>r</u> S	Sampling	and Analysis F	Plan Antici	pated Samp	les - Pilo	ot Treatn	ent Proje	ect _																	
									C	Organic Cor	nstituents									Inorgan	nic and "V	Vet Chem	nistry" Coı	nstituent	s			Mic	crobiologi	ical Con	nst.			Radiolog	gical Cons	tituents		
Well Name	Field Sample Identification (proposed)	Type of Pump or Sampling System	Well Type	Sample Category	VOCs + TICs (EPA 524.2 and 8260) Low-level 1,2,3-TCP (SRL EPA 524M-TCP)	SVOCs + UCMRZ SVOCs (EPA 525.2) BNAs + TICs (EPA 625, 625.1) GRO/TPH.g and ethylene givcol (SW 8015)	GHO/, IPPg and entylene glycol (SW 8012) Acrolein and Acrylamide (EPA 8316) DIMP (EPA 538)	and Datapon (Er. 8, 420.1) 1699) ocarbons (EPA 8:	wenanoi and srnanoi (urect Injection sw 801.5) Fumigants (EPA 504.1) PAH (EPA 550, 8270SIM)	OCP/PCBs (EPA 608) PCDDs and PCDPs (EPA 82808, 8290)	Herbicides (EPA \$15.3, \$15.4) Carbamates (EPA 531.1) Giyphosate (EPA 647)	Propylene Oxide (NIOSH Method 1612) Endothall (EPA 548.1) Dignat and Paraguat (EPA 549.2)	1,4-Dioxane (EPA 522) Carboxyl Compounds (EPA 556, 8015m)	Acetaniide Degradants (EPA 535) Nitrosamines (EPA 521)	Per- and Polyfluoroalkyl Substances (PFAS) (EPA 537) 2.3.7.8-TCDD (EPA 16138) Alkyl Phenols (ASTM D7065) Diuron (EPA 532)	Organophosphorus Pesticides (EPA 614) Hydrazine (OSHA 20M or 8315)	Total [Unfiltered] Metals (EPA 200.8, 245.1, 272.1, 272.2) Total and Dissolved Manganese (EPA 200.8, 272.1, 272.2, 245.1) Dissolved [Filtered] Metals (EPA 200.8, 272.1, 272.2, 245.1)	Total [Unfiltered] Cations (EPA 200.7) Dissolved [Filtered] Cations (EPA 200.7)	Anions (EPA 3) nium (EPA 218	Perchlorate (EPA 314.0 or 331.0) Color (SM 2120B)	MBAS/ Yoaning Agents (5M 5540c) Odor (5M 2150 B)) Dil & Grasse (FDA 1664A)	oli & vicess (ETA 1004A), Total phosphate as PO4 + Ortho-phosphate as P (EPA 300.0, 365.1, 365.3 or SM 4500-P)	Alkalinity (SM 2320 B) Specific Conductance (SM 2510B or EPA 120.1)	Total Sulfides, dissolved [Filtered] (SM 4500 S2 D) TOC, DOC, and UV-254 (EPA 415.3 or SM 5310-C, 5910-B)	TDS (SM 2540C)	Hardness, Total (SM 2340B, 2340C or EPA 130.1) Turbidity (EPA 180.1 or SM 2130B) Asbestos TEM (EPA 100.2, TEM)	Oyanide (EPA 335.4) pH (SM 4500 H+B)	Ammonia (SM 4900-NH3 or EPA 365.3) Total Coliform (SM 9221B)	Fecal Coliform (SM 9221-C/E) E. coli (SM 9221F)	Cryptosporidium and Giardia (EPA 1623 or 970-R-96-001) Enteric Viruses (SM 9510)	8 8	Gross alpha and beta (EPA 900.0 or SM 71.10-B) Uranium (EPA 907, 200.8) Gamma Spec (EPA 901.1)	nitter	(SW 846 6020A OF EFA Th (HA SL 300) 909.0)	(EFR 503.0) Radium-226 and 228 26 (EPA 903.1 or SM ⁻	Radium-228 (EPA Ra-05 or 904.0) Thorium 230 and 232 (EPA EMSL-33, 907)	Cesium 134 and Bismuth-210 (EPA 901) Americium, Plutonium 239, 240 and Polonium 209 (ASTM D7939 or EPA 402, Am241-D3972 and Plutoniumjisol-D3972)	Tritium (EPA 906.0 or SM 7500-3H) Stontium-90 (EPA 905.0 or SM 7500-Sr B)
TMW-1 (EB-1)																												<u> </u>										
HVIVV-1 (EB-1)	Feed	Treatment pilot	Temp. Monitor Well	Primary										I = V			x x x	хх	X				Х	Х	х	х					X >	хх			x x	X		
TMW-1 (EB-1)	Feed C-1	Treatment pilot Treatment pilot	Temp. Monitor Well Temp. Monitor Well	Primary Primary													X X X	X X	x				Х	X	х	X		\mathbf{H}				x x x x	\blacksquare		X X			
																							X		x 2	x		\blacksquare	\blacksquare)					х		
TMW-1 (EB-1)	C-1	Treatment pilot	Temp. Monitor Well	Primary													х									X					X >	хх			хх	X X		
TMW-1 (EB-1) TMW-1 (EB-1)	C-1 Discharge	Treatment pilot Treatment pilot	Temp. Monitor Well Temp. Monitor Well	Primary Primary													х									x					X >	x x x x			X X X X	X X X		
TMW-1 (EB-1) TMW-1 (EB-1) TMW-1 (EB-1) TMW-1 (EB-1) TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge	Treatment pilot Treatment pilot Treatment pilot	Temp. Monitor Well	Primary Primary Primary													х									K					X >	x x x x			x x x x x x x x x x x x x x x x x x x	X X X X X X X X		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed	Treatment pilot	Temp. Monitor Well	Primary Primary Primary Primary Primary Primary													х									К					X >	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed - FD	Treatment pilot	Temp. Monitor Well	Primary Primary Primary Primary Primary Primary Primary Primary													x x x x x x x x x x x x x x x x x x x									к					x > > > > > > > > > > > > > > > > > > >	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1	Treatment pilot	Temp. Monitor Well	Primary Primary Primary Primary Primary Primary Primary Primary Primary													х									K					X > > > > > > > > > > > > > > > > > > >	x x x x x x x x x x x x x x x x x x x			X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed Feed Feed-FD C-1 Discharge	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x									K					X > > > > > > > > > > > > > > > > > > >	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed - FD C-1 Discharge Discharge Discharge	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :						x	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed Feed-FD C-1 Discharge Discharge-FD Feed	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x							X :	x					x	x x x x x x x x x x x x x x x x x x x			X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge Discharge-FD Feed C-1	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	X					x	x x x x x x x x x x x x x x x x x x x			X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C:1 Discharge Feed C:1 Discharge Feed Feed-FD C:1 Discharge-FD Feed C:1 Discharge-FD Feed C:1 Discharge	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	X					x	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed-FD C-1 Discharge Discharge-FD Feed C-1 Discharge Feed Feed-FD Feed Feed-FD Feed Feed-FD	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	x x					x	x x x x x x x x x x x x x x x x x x x			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge Discharge-FD Feed C-1	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	x x					x	x x x x x x x x x x x x x x x x x x x			X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge Discharge-FD Feed C-1 Discharge C-1 Discharge	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	x x					x y y y y y x y y x y y x y y x y y y x y	X X X X X X X X X X X X X X X X X X X			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge Discharge-FD Feed C-1	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	x x x					x y y y y y y y y y y y y y y y y y y y	x x x x x x x x x x x x x x x x x x x			X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge Discharge-FD Feed C-1 Discharge Feed C-1 Discharge Feed Feed Feed Feed Feed Feed Feed Fe	Treatment pilot	Temp. Monitor Well	Primary													x x x x x x x x x x x x x x x x x x x	x x					X	x	X :	x x					x y y y y y y y y y y y y y y y y y y y	X X X X X X X X X X X X X X X X X X X			x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed Feed-FD C-1 Discharge-FD Feed C-1 Discharge Feed C-1 Discharge Feed C-1 Feed C-1 Feed C-1 Feed Feed Feed Feed Feed Feed Feed Fee	Treatment pilot	Temp. Monitor Well	Primary	x x :	X X X	X X X			X X X	X X X X	x x x	X X	X X	x x x x x		x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x	x	X X X >	(x x	(x	X	x	x ;	x x x x	X X	X X X	x x		x y y y y y y y y y y y y y y y y y y y	X X X X X X X X X X X X X X X X X X X			X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	X X	
TMW-1 (EB-1)	C-1 Discharge Feed C-1 Discharge Feed -FD C-1 Discharge Discharge - FD Feed C-1 Discharge Discharge Discharge C-1 Discharge Feed C-1 Discharge	Treatment pilot	Temp. Monitor Well	Primary	x x ;	X X X X	x x x x		x x x x	x x y	x x x x	x x x	x x	x x	x x x x		x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x	x	x x y	(x x	C X	x	x	x ;	x x x x x	x x	× x x	x x		x	X X X X X X X X X X X X X X X X X X X			X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	x x	x x

in the table will be sampled twice in each week indicated, unless otherwise noted.

d method